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ABSTRACT
The details of the dynamo process that is responsible for driving the solar magnetic activity
cycle are still not fully understood. In particular, whilst differential rotation provides a plausible
mechanism for the regeneration of the toroidal (azimuthal) component of the large-scale
magnetic field, there is ongoing debate regarding the process that is responsible for regenerating
the Sun’s large-scale poloidal field. Our aim is to demonstrate that magnetic buoyancy, in
the presence of rotation, is capable of producing the necessary regenerative effect. Building
upon our previous work, we carry out numerical simulations of a local Cartesian model
of the tachocline, consisting of a rotating, fully compressible, electrically conducting fluid
with a forced shear flow. An initially weak, vertical magnetic field is sheared into a strong,
horizontal magnetic layer that becomes subject to magnetic buoyancy instability. By increasing
the Prandtl number we lessen the back reaction of the Lorentz force onto the shear flow,
maintaining stronger shear and a more intense magnetic layer. This in turn leads to a more
vigorous instability and a much stronger mean electromotive force, which has the potential to
significantly influence the evolution of the mean magnetic field. These results are only weakly
dependent upon the inclination of the rotation vector, i.e. the latitude of the local Cartesian
model. Although further work is needed to confirm this, these results suggest that magnetic
buoyancy in the tachocline is a viable poloidal field regeneration mechanism for the solar
dynamo.

Key words: MHD – Sun: magnetic fields – dynamo – Sun: rotation – hydrodynamics –
instabilities

1 INTRODUCTION

One of the leading paradigms for the maintenance of the Sun’s
observed large-scale magnetic field is the 𝛼𝜔-dynamo, following
ideas introduced by Parker (1955b). This dynamo mechanism re-
quires differential rotation to stretch magnetic field lines in the
toroidal (azimuthal) direction, via the 𝜔-effect. The dynamo loop is
then closed by the 𝛼-effect, whereby the action of rising, twisting
motions (acting upon this shear-generated toroidal field) lead to the
production of a mean poloidal field. The strongest rotational shear
is known to be located in the solar tachocline, at the base of the
convective envelope, making it a likely site for the 𝜔-effect to be
operating. However, the exact source of the 𝛼-effect remains contro-
versial. Following Parker’s original ideas (Parker 1955b, 1993), the
𝛼-effect is often attributed to cyclonic convection. Yet simulations
of dynamos driven by (moderately) turbulent rotating convection
typically produce only disordered, small-scale magnetic fields (e.g.
Cattaneo & Hughes 2006; Favier & Bushby 2013), suggesting a
negligible 𝛼-effect in such systems. It is therefore natural to seek
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alternative processes that can produce a similar “rise and twist”
regenerative effect.

It is well known that regions of strong magnetic field tend to
be less dense than their surroundings (Parker 1955a; Jensen 1955),
and are therefore buoyant. Motivated by the solar tachocline, di-
rect numerical simulations have been used to study the magnetic
buoyancy instability in a horizontal magnetic layer that is induced
by a vertical shear (Vasil & Brummell 2008, 2009; Silvers et al.
2009a,b; Barker et al. 2012). In these studies, in which the effects
of rotation are neglected, an initially weak, uniform, vertical mag-
netic field is wound up by a shear flow that is maintained by a
fixed volumetric forcing. Despite the similarity of the models, the
results are surprisingly varied. Whereas Vasil & Brummell (2008)
found magnetic buoyancy instability only with an unrealistically
strong shear forcing (an order of magnitude larger than the sound
speed), Silvers et al. (2009b) were able to excite magnetic buoyancy
instability with a significantly weaker shear. Silvers et al. (2009b)
attributed their success to double-diffusive effects, in particular the
small ratio of magnetic to thermal diffusivity. More recently, how-
ever, Lewis (2022) has pointed out that another crucial difference
between these two models is in the choice of initial condition. If
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the fluid is initialised from rest (as in Vasil & Brummell 2008) then
the Lorentz force from the growing magnetic field can act to sup-
press the shear before the field itself becomes buoyantly unstable.
By contrast, if the shear flow is established before the vertical mag-
netic field is introduced (as in Silvers et al. 2009b) then the toroidal
field can become stronger by several orders of magnitude, greatly
increasing the likelihood of magnetic buoyancy instability. It should
be emphasised that, in both of these scenarios, the instability arises
as a perturbation in an evolving system, and the dominant mode of
instability changes over the course of this evolution (Lewis 2022).

The effects of rotation on magnetic buoyancy instability are
non-trivial (e.g. see the review by Hughes 2007). However, ide-
alised models of the magnetic buoyancy instability with an imposed
magnetic layer have shown that it can produce a mean electromo-
tive force (EMF) that could, in principle, lead to the production of
a mean poloidal field (e.g. Moffatt 1978; Davies & Hughes 2011).
In our recent publication (Duguid et al. 2023, henceforth Paper I),
we considered the evolution of a shear-generated magnetic layer,
extending the model of Silvers et al. (2009b) to include rotation.
For sufficiently rapid rotation, a systematic positive-signed EMF
was produced in the direction parallel to the mean field. Such a
systematic mean EMF is likely to be conducive to dynamo action
of 𝛼𝜔-type as per the original ideas of Parker (1955b). However,
further work is needed to confirm this idea, and there are some key
limitations that will need to be overcome before a successful dy-
namo can be produced. In particular, the parameter regime in which
these simulations operate is an extremely challenging one (similar
to that of Silvers et al. 2009b): the viscosity and magnetic diffusiv-
ity are both several orders of magnitude smaller than the thermal
diffusivity, which greatly increases the range of scales that must be
resolved in the simulations. It would not be feasible to run a global
spherical dynamo calculation in this parameter regime, and even
local Cartesian dynamo models will be very demanding in terms
of computational requirements. Another limitation is that the shear
flow in all of the simulations presented in Paper I eventually became
“un-tachocline-like”, either through the suppression of differential
rotation or through the generation of strong meridional shear, as a
result of the Lorentz force associated with the large-scale magnetic
field. The simulations were therefore inherently transient, making
it difficult to extract meaningful statistics. Finally, these calcula-
tions were restricted solely to the polar regions of the solar interior,
which is not the primary region of interest for the solar dynamo.
Overcoming these limitations forms the motivation for the present
paper.

The main aim of this paper is to demonstrate that many of
these issues can be overcome by making appropriate changes to the
parametric regime of the simulations. In Section 2, we present brief
details of the model, focusing upon the differences between this
model and that considered in Paper I. This is followed, in Section 3,
by a detailed numerical study, focusing upon the effects of varying
the diffusive parameters. Section 4 describes the effect of varying
the latitude of the domain, i.e. the angle between the rotation axis
and gravity. We conclude the paper with a summary of the main
findings and further discussion.

2 NUMERICAL MODEL

2.1 Equations and parameters

The model, which we shall briefly summarise in this section, is
a generalisation of that presented in Paper I. We consider a local

Figure 1. Schematic of the Cartesian model, which represents a local patch
of the solar interior located at some latitude 𝜙 (note that negative values of
𝜙 correspond to the southern hemisphere). The arrows in the 𝑥-direction
represent the tachocline-like shear flow and the vertical field lines represent
the imposed initial magnetic field 𝐵0e𝑧 .

Cartesian box within the tachocline, which we model as an ideal gas
that is electrically conducting and fully compressible. As indicated
in Fig. 1, the local Cartesian axes 𝑥, 𝑦, 𝑧 are defined in the directions
of increasing longitude, colatitude, and depth, respectively. When
rotation is included, we work in the frame rotating with constant
angular velocity𝛀 = −Ω(cos(𝜙)𝒆𝑦+sin(𝜙)𝒆𝑧), where 𝜙 represents
the latitude of the model and the scalar quantity Ω defines the rota-
tion rate. Note that negative values of 𝜙 correspond to the southern
hemisphere. A volumetric forcing is applied to the momentum equa-
tion to produce an azimuthal shear flow (in the 𝑥 direction), mimick-
ing the local differential rotation within the tachocline. Because the
rotation axis is tilted, the forcing required is slightly different to that
in Paper I, and is defined below by equation (5). The initial state is
that of the hydrodynamically stable shear flow with a weak vertical
magnetic field, 𝑩 = 𝐵0𝒆𝑧 , as well as small-amplitude thermal noise
to initiate three-dimensional motions of the fluid. The vertical field
is subsequently stretched out in the 𝑥-direction by the shear flow,
producing a magnetic layer that eventually becomes dynamically
significant and, potentially, susceptible to magnetic buoyancy insta-
bility. The domain size is the same as in Paper I, with 0 ⩽ 𝑥 ⩽ 2𝑑,
0 ⩽ 𝑦 ⩽ 0.5𝑑, and 0 ⩽ 𝑧 ⩽ 𝑑 where 𝑑 is used as our characteristic
lengthscale.

We use the same non-dimensionalisation as in Paper I (scaling
lengths with respect to 𝑑, and time with respect to the isothermal
sound-crossing time) which results in a system of dimensionless,
nonlinear differential equations describing the temporal evolution
of the density 𝜌, temperature 𝑇 , velocity 𝒖 and magnetic field 𝑩.
We repeat the equations here for reference,

𝜌
𝜕𝒖

𝜕𝑡
+ 𝜌(𝒖 · ∇)𝒖 = −Ta0

1/2 𝜎𝜅𝜌𝛀 × 𝒖 − ∇𝑃 + 𝜃 (𝑚 + 1)𝜌𝒆𝑧

+ 𝐹 (∇ × 𝑩) × 𝑩 + 𝜎𝜅∇ · 𝜏 + 𝑭𝑠 , (1a)

𝜌
𝜕𝑇

𝜕𝑡
+ 𝜌(𝒖 · ∇)𝑇 = −(𝛾 − 1)𝑃∇ · 𝒖 + 𝛾𝜅∇2𝑇

+ 𝐹 (𝛾 − 1)𝜁0𝜅 |∇ × 𝑩 |2 + (𝛾 − 1)𝜎𝜅
2

𝜏2 ,

(1b)
𝜕𝑩

𝜕𝑡
= ∇ × (𝒖 × 𝑩 − 𝜁0𝜅∇ × 𝑩) , (1c)

𝜕𝜌

𝜕𝑡
= −∇ · (𝜌𝒖) , (1d)

∇ · 𝑩 = 0 . (1e)
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Shear-driven magnetic buoyancy 3

Description Definition Values

𝐹 Magnetic field strength
𝐵2

0
ℜ𝑇0𝜌0𝜇0

{0, 2.5 × 10−6}

𝜎 Prandtl number
𝜇𝑐𝑝

𝐾
0.00025 – 0.01

𝜃 Temperature gradient
Δ𝑇

𝑇0
5

𝜅 Thermal diffusivity
𝐾

𝑑𝜌0𝑐𝑝
√︁
ℜ𝑇0

0.01

𝜁0 Inverse Roberts number
𝜂𝑐𝑝𝜌0
𝐾

∗ 5.0 × 10−4

𝛾 Ratio of specific heats
𝑐𝑝

𝑐𝑣
5/3

𝑚 Polytropic index
𝑔𝑑

ℜΔ𝑇
− 1 1.6

Ta0 Taylor number (top)
4𝜌2

0Ω
2𝑑4

𝜇2 -

Ta Taylor number (mid) Ta0

(
1 + 𝜃

2

)2𝑚
107 – 5 × 108

𝜙 Latitude - {− 𝜋
2 , −

𝜋
4 , −

𝜋
6 }

𝐴 Shear amplitude - 0.02

Table 1. Non-dimensional parameters in the system, including a text de-
scription/name of the quantity, the definition, and the value (or range of
values) the parameter takes. Full details regarding the definitions of these
parameters can be found in Paper I. ∗ This value for 𝜁0 is that adopted for
almost all of the presented results, although we comment briefly on the im-
pact of increasing this parameter in § 3.

Here 𝜏 is the non-dimensional viscous stress tensor

𝜏𝑖 𝑗 ≡
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2

3
𝛿𝑖 𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
(2)

(where 𝛿𝑖 𝑗 denotes the Kronecker delta), and the pressure 𝑃 satisfies
the equation of state for an ideal gas,

𝑃 = 𝜌𝑇 . (3)

The non-dimensional parameters along with their typical values in
this work are summarised in Table 1. Most of these parameters retain
the same values as in Paper I to make direct comparisons simpler.
Note that the values for the Taylor number that we quote later are
measured at the mid-depth of the domain, 𝑧 = 0.5 (the location of
the shear layer), and are related to Ta0 by Ta ≈ 55Ta0.

All variables are assumed to be periodic in the horizontal direc-
tions. The upper and lower boundaries are modelled as impermeable
and stress-free, with a vanishing tangential magnetic field. We also
impose the temperature at the upper boundary (𝑧 = 0) and the heat
flux at the lower boundary (𝑧 = 1). In our non-dimensional units,
these boundary conditions have the form

𝑢𝑧 =
𝜕𝑢𝑥

𝜕𝑧
=

𝜕𝑢𝑦

𝜕𝑧
= 0 for 𝑧 ∈ {0, 1} , (4a)

𝐵𝑥 = 𝐵𝑦 =
𝜕𝐵𝑧

𝜕𝑧
= 0 for 𝑧 ∈ {0, 1} , (4b)

𝑇 = 1 for 𝑧 = 0 , and
𝜕𝑇

𝜕𝑧
= 𝜃 for 𝑧 = 1 . (4c)

The forcing term 𝑭𝑠 in Eq. (1a) is chosen so that, in the absence
of magnetic fields or instabilities, it maintains a balance between
viscous and Coriolis forces with a “target” azimuthal shear flow
𝑈0 (𝑧)𝒆𝑥 :

Figure 2. Comparison between a solution of the horizontally-invariant equa-
tions (top panels, adapted from Lewis (2022)) and the full three-dimensional
equations (bottom panels, taken from Duguid et al. (2023), where the angled
brackets denote a horizontal average). The two cases have different values
for the initial vertical field, 𝐹, and shear amplitude, 𝐴, leading to dynamics
on different timescales, but the profiles of the horizontally-averaged 𝐵𝑥 (left
panels) and 𝑢𝑥 (right panels) are qualitatively comparable.

𝑭𝑠 ≡ −𝜎𝜅


𝑈′′
0√︁

Ta0 𝜌𝑈0 sin 𝜙
−
√︁

Ta0 𝜌𝑈0 cos 𝜙

 , (5)

where ′ denotes a 𝑧-derivative. The target flow is the same as in
Paper I:

𝑈0 (𝑧) ≡ 𝐴 tanh[10(𝑧 − 0.5)] , (6)

where 𝐴 sets the shear amplitude. For reasons described ear-
lier, and as in Paper I, the flow is allowed to settle to the tar-
get profile 𝑈0 before we introduce a uniform vertical magnetic
field and small-amplitude noise to the temperature. All simula-
tions presented later adopt the same domain size as in Paper I with
(𝐿𝑥, 𝐿𝑦, 1) = (2, 0.5, 1) and are performed with a numerical reso-
lution (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) = (192, 128, 192). The parameter values were
chosen following a more extensive low-resolution parameter survey
with (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) = (128, 64, 128).

In Paper I, we considered the low Prandtl number regime
(𝜎 = 0.00025) of Silvers et al. (2009b), adopting a vertical rotation
vector. Before proceeding to describe the new results in the present
paper, it is useful to first summarise the general evolution of a typical
simulation from this low Prandtl number regime. In the early stages,
the shear flow𝑈0 (𝑧)𝒆𝑥 deforms the initially vertical magnetic field,
producing a predominantly horizontal magnetic layer (aligned with
the 𝑥-axis) around 𝑧 = 0.5, the peak amplitude of which initially
grows linearly in time. Once the magnetic field becomes strong
enough to become dynamically significant, the resultant Lorentz
force causes the flow to depart from 𝑈0. This eventually drives the
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system away from a tachocline-like profile, significantly limiting the
field amplification process (the field also diffuses due to resistivity,
but this plays only a minor role in the evolution of the large-scale
field over the timescale of the simulations). Due to the significant
density stratification, the flow and the field develop vertical asym-
metry, with more significant changes occurring in the upper half
of the domain. As shown in Fig. 2, the temporal evolution of the
magnetic layer is comparable to that of the horizontally-invariant
system considered by Lewis (2022). Due to the effects of rotation,
the Lorentz force from the growing magnetic layer also drives a per-
sistent flow in the 𝑦-direction, as the Lorentz, Coriolis and viscous
forces must remain approximately in balance on long timescales. In
cases where the magnetic layer becomes unstable, we observe the
formation of tube-like structures in the flow and field (in the upper
part of the layer) that are elongated in the direction of the mean
field, as expected for magnetic buoyancy instability. For the cases
considered in Paper I, the magnetic buoyancy instability is quasi-
two-dimensional in the early stages (before the shear flow departs
from the tachocline-like profile), taking the form of an interchange
instability, with no significant arching of the magnetic field lines.

2.2 Mean EMF

The most relevant quantity for assessing the system’s potential to
act as a dynamo is the mean electromotive force (mean EMF). We
compute the mean EMF following the standard mean-field approach
(e.g. Moffatt & Dormy 2019). The velocity and the magnetic field
are decomposed into their mean and fluctuating parts, • ≡ ⟨•⟩ +
•′. Here, angled brackets denote horizontally-averaged quantities
defined by

⟨•⟩ ≡ 1
𝐿𝑥𝐿𝑦

∫ 𝐿𝑥

0

∫ 𝐿𝑦

0
• d𝑥 d𝑦 , (7)

where 𝐿𝑥 and 𝐿𝑦 define the domain size in the horizontal direc-
tions (we will make use of angled brackets throughout this paper to
denote horizontal averaging of this form), and primes denote fluc-
tuating quantities. Applying this decomposition to the horizontally-
averaged induction equation (Eq. 1c), and noting that horizontal
averages of fluctuating quantities vanish, we obtain

𝜕⟨𝑩⟩
𝜕𝑡

= ∇ ×
(
⟨𝒖⟩ × ⟨𝑩⟩ + E

)
+ 𝜁0𝜅

𝜕2

𝜕𝑧2 ⟨𝑩⟩ , (8)

where the mean EMF, E, is defined as

E ≡ ⟨𝒖′ × 𝑩′⟩ . (9)

We note that only the 𝑥 and 𝑦 components of E contribute to the
generation of the mean field in equation (8). In idealised mean-field
theory, the mean EMF is often expressed as a sum of contributions
from the 𝛼 effect, turbulent pumping, and turbulent magnetic diffu-
sion. However, as noted by Davies & Hughes (2011), and discussed
in detail in Paper I, it is not clear that such a decomposition is mean-
ingful in the present context. In what follows, we will focus upon
the EMF itself rather than its interpretation in terms of mean-field
theory.

3 VARYING THE VISCOUS AND MAGNETIC
DIFFUSIVITIES

For plausible velocity shear profiles, shear-driven magnetic buoy-
ancy has only previously been achieved in numerical simulations by
adopting values for the viscosity and magnetic diffusivity that are

much smaller than the thermal diffusivity. In particular, the simula-
tions presented in Paper I had 𝜁0 = 5 × 10−4 and 𝜎 = 2.5 × 10−4

(with a dimensionless thermal diffusivity of 𝜅 = 0.01). Although
these simulations are far more dissipative than the real tachocline,
these parameters do ensure that the viscous, Ohmic and thermal
diffusion timescales have the correct ordering, with the thermal dif-
fusion time much shorter than the other two. However, as noted in
the Introduction, this is a challenging numerical regime. Further-
more, the simulations described in Paper I had a number of other
limitations, particularly the eventual deviation of the mean velocity
from the target profile. In this section we will investigate to what ex-
tent these results depend on the values of 𝜎 and 𝜁0, and whether the
constraints on their values can be relaxed. As well as reducing the
computational burden we would ideally also like to find a parameter
regime in which the shear flow remains tachocline-like, with strong
azimuthal shear (in the 𝑥 direction) and much weaker flows in the
latitudinal (𝑦) direction.

In order to make direct comparisons with previous results we
will retain most of the parameters from Paper I (see Table 1).
Throughout this section we take the rotation axis to be vertical,
with 𝜙 = −𝜋/2 (corresponding to the south pole)1 and the rota-
tion rate is fixed, with a mid-layer Taylor number of Ta = 5 × 108,
matching the most rapidly rotating case in Paper I. With the (di-
mensionless) thermal diffusivity fixed at 𝜅 = 0.01 (as in Paper I),
we continue to restrict attention to values of 𝜎 and 𝜁0 that are much
smaller than unity, to ensure that the thermal diffusion timescale is
always shorter than the other diffusive timescales. However, there is
certainly scope to increase both 𝜎 and 𝜁0 without violating this con-
dition. Whilst this does push the calculations slightly further away
from the conditions in the tachocline, the advantage of adopting this
approach is that it makes the computations less onerous (which will
be essential for future simulations of the full dynamo problem).

We focus initially upon the effects of increasing 𝜁0, i.e. increas-
ing the magnetic diffusivity. Unfortunately, even a modest increase
from 𝜁0 = 5.0 × 10−4 to 𝜁0 = 1.5 × 10−3 suppresses the instabil-
ity in our simulations. This result is partly explained by enhanced
diffusion of the magnetic layer, which reduces the strength and
gradient of ⟨𝐵𝑥⟩. Much more importantly, however, the increased
value of 𝜁0 increases the magnetic field gradient required for mag-
netic buoyancy instability to occur (Gilman 1970; Acheson 1979;
Hughes 2007). Based on this finding, and given that we do not want
to decrease 𝜁0 any further for numerical reasons, we therefore fix
𝜁0 = 5×10−4 in all calculations that will be presented from here on.
The remainder of this section will focus upon the (much more in-
teresting) changes in behaviour that occur when the Prandtl number
is varied.

3.1 Prandtl number

Guided by an extensive low-resolution parameter survey, we will
present results for 𝜎 ∈ {0.00025, 0.005, 0.01}. We demonstrated in
Paper I that the 𝜎 = 0.00025 case does indeed generate magnetic
buoyancy instability; it is provided here as a reference point for
the other cases. At the other end of this range, we elected not to
increase 𝜎 beyond 0.01 for a number of reasons. In particular, we
wanted to ensure that the effects of viscous heating (associated with
the forced shear) remained negligible on the timescales of interest,

1 This is the same rotation vector considered in Paper I, but note that there
is an erroneous minus sign in the definition of 𝛀 in that paper, which should
read 𝛀 = Ωe𝑧 rather than 𝛀 = −Ωe𝑧 .

MNRAS 000, 1–12 (2022)



Shear-driven magnetic buoyancy 5

Figure 3. Snapshots taken at 𝑡 ≈ 500 for 𝜎 ∈ {0.00025, 0.005, 0.01}. Top: pseudocoloured isovolumes of
√
𝐹𝐵′

𝑥 , where 𝐵′
𝑥 = 𝐵𝑥 − ⟨𝐵𝑥 ⟩, with

√
𝐹 ⟨𝐵𝑥 ⟩

as a backdrop. Bottom: pseudocoloured isovolumes of 𝑢𝑧 again with
√
𝐹 ⟨𝐵𝑥 ⟩ as a backdrop.

and it has been confirmed (by artificially suppressing the relevant
terms in the code) that this is indeed the case even for 𝜎 = 0.01.
Secondly, we needed to ensure that the thermal diffusion timescale
remained much shorter than the viscous timescale, and increasing
𝜎 much further would have violated this constraint. Finally, for
larger values of 𝜎 we found that the initial perturbations dissipated
very quickly before the magnetic field became buoyantly unstable,
significantly delaying the apparent onset of the instability (for a
given initial thermal perturbation). Given that the magnetic layer
is itself evolving in time, delayed onset for the magnetic buoyancy
instability could have detrimental consequences for any potential
future dynamo calculation.

There is one further consideration that should be mentioned
before presenting the results, namely the stability of the background
shear. As discussed in Paper I, shear flows of this nature can be
hydrodynamically unstable if the product of the Prandtl number
and the Richardson number, Ri (which is the square of the Brunt-
Väisälä frequency divided by the local shearing rate), is small (Zahn
1974; Garaud et al. 2017). For the simulations described here, for
which Ri ≈ 18.57, we have Ri𝜎 ≈ {0.0046, 0.0929, 0.1857} for
𝜎 ∈ {0.00025, 0.005, 0.01} respectively. The two higher 𝜎 cases
lie well above the approximate stability threshold of Ri𝜎 > 0.007
determined empirically by Garaud et al. (2017), which suggests
that both should be stable. This has been confirmed by a set of
hydrodynamic simulations. In the absence of a magnetic field, any

deviations from the target flow (which might be indicative of an
underlying hydrodynamic instability) are even weaker in these cases
than that shown for the lowest 𝜎 case in Paper I.

Figure 3 illustrates the key differences in the flow and field
structures as a function of 𝜎 after 𝑡 ≈ 500 time units. The upper
panels show the distributions of ⟨𝐵𝑥⟩ and 𝐵′

𝑥 ; the lower panels show
the distribution of 𝑢𝑧 (note that the 𝐵𝑥 plots include a factor of

√
𝐹,

which allows a more direct comparison with the amplitude of 𝑢𝑧 in
our dimensionless units). These snapshots show that the magnetic
buoyancy instability for each value of 𝜎 is at a different stage of its
development. For 𝜎 = 0.00025, the instability is confined to a thin
layer and the perturbations have a relatively low amplitude, with
very short lengthscales in both of the field-perpendicular (𝑦 and
𝑧) directions. As was highlighted in Paper I, the instability for this
case is interchange-like, in the sense that the perturbations have little
variation in the direction parallel to the mean field. The perturbations
in both of the higher 𝜎 cases have reached a significantly greater
amplitude at 𝑡 ≈ 500, because in those cases the instability has
both an earlier onset and a faster growth rate. As mentioned earlier,
in those cases the instability is initially interchange-like, but by
the time shown in Fig. 3 the perturbations have developed a clear
undular structure. The fluid motions by this time have developed
into plumes, with a “mushroom”-like cross-section (reminiscent of
that observed by Cattaneo & Hughes 1988). As would be expected,
this undular structure is characterised by a long lengthscale in the
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Figure 4. Horizontally-averaged vertical profiles taken at 𝑡 ≈ 500 for 𝜎 ∈
{0.00025, 0.005, 0.01}, as denoted by the legend. Note that for

√
𝐹𝐵𝑥

we also show the profiles at 𝑡 ≈ 200 (denoted by dotted/dashed lines) to
highlight the evolution of the field. The insets in the lower two plots focus
upon the higher 𝜎 cases.

field-parallel direction, and a much shorter lengthscale in the 𝑦

direction, although it is apparent that the typical lengthscale in the 𝑦
direction tends to increase with increasing 𝜎. One other difference
that is worth mentioning at this stage is the relative tilt of the tube-
like structures in the 𝑥𝑦-plane (a phenomenon that was discussed
in detail in Paper I). Although it is not easy to see in these figures,
there is quite a pronounced tilt in the lowest 𝜎 case; the degree of
tilt for larger 𝜎 is much smaller.

The Prandtl number dependence that is illustrated by Fig. 3 can

Figure 5. Time series of the volume averaged vertical velocity energy for
each value of 𝜎 (see legend).

be understood by analysing the underlying mean fields and flows.
The top panel of Fig. 4 shows the horizontally-averaged vertical
profiles of 𝑢𝑥 at 𝑡 ≈ 500 for each𝜎. As noted in Paper I for the lowest
𝜎 case, the velocity shear is reduced by the action of the Lorentz
force, eventually departing significantly from the target flow, 𝑈0.
In the higher 𝜎 cases, by contrast, the shear flow is practically
indistinguishable from𝑈0. Given the importance of the shear profile
for the generation of the magnetic layer, it is not surprising that
we see significant differences in the horizontally averaged vertical
profiles of 𝐵𝑥 , which are also shown in Fig. 4. At early times, in
all cases, the induced field is strongest about the mid-plane. At
𝑡 ≈ 200, we see that the ⟨𝐵𝑥⟩ distributions are almost identical in
the higher 𝜎 cases, whereas the lowest 𝜎 case is already diverging
as the flow is being perturbed by the magnetic field (producing
a shallower magnetic field gradient above the mid-plane). Whilst
the peak magnetic fields are of the same order of magnitude in
all cases at 𝑡 ≈ 200, the Prandtl number dependence of the forcing
(Eq. 5) means that the field can more easily perturb the force balance
in the lowest 𝜎 cases, leading to the observed flattening of the
shear profile. At later times, we see a smoother ⟨𝐵𝑥⟩ profile in
the 𝜎 = 0.00025 case, whilst there is much more structure in the
mean field distribution in the higher 𝜎 cases. This is a signature of
the vigour of the magnetic buoyancy instability at higher Prandtl
number, which is strong enough to significantly alter the vertical
distribution of the horizontal magnetic field. The relative vigour of
the instability in these cases is simply a consequence of a steeper
vertical gradient in the shear-generated magnetic layer, which tends
to promote instability (Gilman 1970; Acheson 1979; Hughes 2007).

As discussed in Paper I, the inclusion of rotation tends to drive
mean flows in the 𝑦-direction once the magnetic field becomes
large enough to disturb the initial hydrodynamic force balance (in
which the imposed body force balances viscosity and the Coriolis
force that results from the driven shear). For the reasons outlined
above we might again expect to see weaker flows in this field-
perpendicular direction at higher 𝜎. This can be seen to be the case
in the third plot of Fig. 4, which shows the horizontally-averaged
vertical profiles of 𝑢𝑦 for each Prandtl number at 𝑡 ≈ 500. In
the 𝜎 = 0.00025 case, these flows reach a peak amplitude that is
comparable in magnitude to that of the initial shear. Whilst there is
also a systematic ⟨𝑢𝑦⟩ flow in the higher 𝜎 cases, its amplitude is
negligible (more than an order of magnitude smaller) compared to
the mean flow in the 𝑥-direction. Since ⟨𝐵𝑦⟩ is being induced by
⟨𝑢𝑦⟩, at a rate approximately proportional to 𝜕𝑧 ⟨𝑢𝑦⟩, we observe a
decrease in the magnitude of ⟨𝐵𝑦⟩ for increasing 𝜎 (in the lower
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part of Fig. 4). To put this another way, whilst the mean horizontal
field exhibits a significant tilt in the 𝑥𝑦-plane in the 𝜎 = 0.00025
case (which significantly complicates the interpretation of the mean
EMF measurements, as discussed in Paper I), this tilting effect tends
to be reduced as we increase 𝜎. This lack of tilt is reflected in the
field and flow structures that are shown in Fig. 3.

To analyse the onset (and subsequent evolution) of the mag-
netic buoyancy instability in a more quantitative manner, Fig. 5
shows the volume-averaged energy in the vertical velocity for
𝜎 ∈ {0.00025, 0.005, 0.01}. All cases feature an initial decay phase
as the initial, thermally-induced perturbations gradually dissipate.
Note that the oscillatory behaviour at early times is indicative of the
presence of acoustic and internal gravity waves, the latter of which
are dominant. In both the 𝜎 = 0.00025 and 𝜎 = 0.005 cases, the
perturbation energy plateaus at 𝑡 ≈ 150 (at a lower level in the latter
case). For 𝜎 = 0.005, the magnetic buoyancy instability onsets at
around 𝑡 ≈ 200, and we observe a rapid growth phase until satura-
tion occurs at around 𝑡 ≈ 300. In the lowest 𝜎 case, the instability
is clearly delayed (due to the smoothing of the shear profile), and
only at around 𝑡 ≈ 400 do we start to see well-defined indications
of growth. In the 𝜎 = 0.01 case, the initial decrease in the energy
in the vertical velocity plateaus slightly later, and at a much lower
level (due to the enhanced diffusion). However the magnetic buoy-
ancy instability again sets in at 𝑡 ≈ 200, with the energy in the
vertical velocity then growing at a similar rate to the 𝜎 = 0.005
case. Here the instability saturates slightly later, at 𝑡 ≈ 400, because
it takes longer for the amplitude of the perturbations to grow to the
required level for saturation. Further increases in 𝜎 would further
reduce the amplitude of the remaining perturbation at the critical
time for the onset of the magnetic buoyancy instability (at 𝑡 ≈ 200),
further delaying the point at which the instability starts to produce
dynamically-significant perturbations to the field and flow.

3.2 Mean electromotive force

With a detailed understanding of the behaviour of the flow and field
as 𝜎 is varied, we now look at how this influences the mean EMF
components, E𝑥 = ⟨𝑢′𝑦𝐵′

𝑧 − 𝑢′𝑧𝐵
′
𝑦⟩ and E𝑦 = ⟨𝑢′𝑧𝐵′

𝑥 − 𝑢′𝑥𝐵
′
𝑧⟩.

As noted above, these are the only components of the mean EMF
that contribute to the generation of the mean magnetic field in
Eq. (8). Although there are some difficulties in terms of the stan-
dard mean-field interpretation of the mean EMF in the context of
this magnetically-driven instability, insights from mean-field theory
suggest that the component of the mean EMF that is parallel to the
mean magnetic field should play a crucial regenerative role in any
Parker-like dynamo mechanism.

The lowest Prandtl number case (𝜎 = 0.00025) was discussed
in detail in Paper I, so we only briefly summarise the main results
here. The time- and depth-dependence of the 𝑥 and 𝑦 components
of the mean EMF for 𝜎 = 0.00025 are shown in the upper panels
of Fig. 6. In this case E𝑥 has a systematic positive-signed localised
peak that grows super-linearly in time. The peak first appears near
the mid-plane and then migrates upwards, roughly following the
evolution of the buoyancy instability. There is also a substantial
negative E𝑦 , whose location closely follows that of E𝑥 . Further-
more, the magnitude of E𝑦 significantly exceeds that of E𝑥 . Davies
& Hughes (2011), who observed similar behaviour in their ide-
alised linear system, associate the component of the EMF that is
perpendicular to the mean field with magnetic pumping and tur-
bulent diffusion. Although the magnitude of the EMF is small (for
example, E𝑥 is approximately 5 × 10−5 at 𝑡 ≈ 500), both com-
ponents are still growing at the end of the simulation, and might

eventually become large enough to influence the evolution of the
mean magnetic field. However, by this time the mean flow has
already departed significantly from the imposed “tachocline-like”
flow, so it is not clear that longer integrations would be meaning-
ful. The substantial (and depth-dependent) rotationally induced tilt
of the mean horizontal field also makes it difficult to disentangle
the field-parallel and field-perpendicular contributions to the mean
EMF. This further complicates the interpretation of these measure-
ments. As noted in the previous section, the rotationally induced
tilt of the mean magnetic field is significantly reduced at higher
Prandtl numbers, meaning that the geometrical distinction between
the field-parallel and field-perpendicular directions is much clearer
in these cases.

The second and third rows of Fig. 6 show the time- and depth-
evolution of E𝑥 and E𝑦 for the higher Prandtl number cases, 𝜎 ∈
{0.005, 0.01}. For these cases we find |E𝑥 | to be approximately
two orders of magnitude larger than in the 𝜎 = 0.00025 case at
comparable times (at least up to 𝑡 ≈ 500). This is a consequence of
a much more vigorous magnetic buoyancy instability (which is itself
a consequence of the fact that the shear remains closer to the target
shear), which produces stronger perturbations to the field and flow.
A mean EMF component of this magnitude is much more likely to
play a significant role in the evolution of the mean field than the
corresponding E𝑥 component in the 𝜎 = 0.00025 case. Compared
to the lowest Prandtl number case, there is also a more complicated
depth dependence for E𝑥 . Whilst there is still a systematic positive
E𝑥 in the vicinity of the mid-plane, both the𝜎 = 0.005 and𝜎 = 0.01
cases show a very thin negative band that migrates towards the
surface as the simulation progresses, following the evolution of
the magnetic buoyancy instability. For 𝜎 ∈ {0.005, 0.01} we can
see from Fig. 6 that E𝑦 remains predominantly negative and is
consistently of larger magnitude than E𝑥 . Furthermore, just like
E𝑥 , the region of significant E𝑦 expands into the upper regions of
the domain as time evolves. A substantial E𝑦 therefore seems to
be a robust feature of this system, independent of the choice of 𝜎.
The bottom row of Fig. 6 shows the time- and depth-evolution of
the mean-field components

√
𝐹⟨𝐵𝑥⟩ and

√
𝐹⟨𝐵𝑦⟩ for the case with

𝜎 = 0.01. Although there is a clear correlation between the location
of the mean field and that of the mean EMF, the two are not related
in a straightforward (e.g. linear) fashion.

In order to understand the observed features of the mean EMF,
it is instructive to analyse its constituent parts in more detail. In the
case of E𝑥 = ⟨𝑢′𝑦𝐵′

𝑧−𝑢′𝑧𝐵′
𝑦⟩, for example, separate consideration of

⟨𝑢′𝑦𝐵′
𝑧⟩ and −⟨𝑢′𝑧𝐵′

𝑦⟩ yields some important insights (as shown in
Paper I for 𝜎 = 0.00025). However, we can gain further insights by
Fourier decomposing the magnetic field and flow perturbations into
a sum of components with different wavenumbers in the azimuthal
(𝑥-)direction. The reason for considering such a decomposition is to
determine the relative importance of undular and interchange modes
in the production of the mean EMF. Due to the periodicity of the do-
main, the (dimensionless) azimuthal wavenumbers of these Fourier
components take the form 𝑛𝑥𝜋, where 𝑛𝑥 is a non-negative integer
representing the number of wavelengths in the 𝑥-direction. There-
fore 𝑛𝑥 = 0 corresponds to an interchange mode, whilst 𝑛𝑥 = 1
corresponds to the undular mode with the longest permitted wave-
length in the domain, 0 ⩽ 𝑥 ⩽ 2. The mean EMF, and its constituent
parts, can then be expressed as sums over the contributions from dif-
ferent values of 𝑛𝑥 . We will focus our Fourier analysis on the higher
Prandtl number cases below. The same analysis can be carried out
for the 𝜎 = 0.00025 case but the results are qualitatively different.
This is a consequence of the rotationally-induced tilt of the mean
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Figure 6. The depth- and time-dependence of E𝑥 and E𝑦 for 𝜎 ∈ {0.00025, 0.005, 0.01} (upper three rows). In the bottom row, we also show (for the
purposes of comparison) the depth- and time-dependence of

√
𝐹 ⟨𝐵𝑥 ⟩ and

√
𝐹 ⟨𝐵𝑥 ⟩ for 𝜎 = 0.01.
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magnetic field (which, as noted above, significantly complicates the
interpretation of the analysis).

In the larger Prandtl number cases, the dominant contributions
to E𝑥 come from perturbations with 𝑛𝑥 ∈ {0, 1}, which represent
the longest wavelengths in the field-parallel direction. In Fig. 7
we show the contribution from perturbations with 𝑛𝑥 = 1 in the
𝜎 = 0.01 case.2 It is clear from comparing Fig. 6 and 7 that the
𝑛𝑥 = 1 mode has the same spatio-temporal structure as the total E𝑥 ,
as well as a similar magnitude. The 𝑛𝑥 = 0 mode for this simula-
tion (not shown) is somewhat smaller in magnitude, and has a less
coherent structure. As a result, the 𝑛𝑥 = 1 mode is the dominant
component, with the interchange mode (i.e. 𝑛𝑥 = 0) accounting for
most of the small differences between the contribution from 𝑛𝑥 = 1
mode and the total E𝑥 . Both terms ⟨𝑢′𝑦𝐵′

𝑧⟩ and −⟨𝑢′𝑧𝐵′
𝑦⟩ of E𝑥 are

of similar magnitude for 𝑛𝑥 ∈ {0, 1}. The former of these terms is
predominantly negative, whereas the latter is predominantly posi-
tive, apart from a thin negative band that propagates upwards. As
a result these two terms generally work in opposition, but reinforce
one another in the upper band leading to the observed strong nega-
tive E𝑥 . We observe similar features when decomposing the EMF
in the case 𝜎 = 0.005 (not shown). As for E𝑥 , the dominant con-
tributions to E𝑦 come from the 𝑛𝑥 ∈ {0, 1} modes of the flow and
field. The 𝑛𝑥 = 1 contribution, which is illustrated in Fig. 7, is again
the larger of the two. Further, it is evident that the 𝑢′𝑧𝐵′

𝑥 term is the
dominant component. This analysis clearly shows that the undular
(𝑛𝑥 = 1) magnetic buoyancy mode is playing a crucial role in the
production of a substantial mean EMF in the higher Prandtl number
cases.

4 VARYING THE ROTATION

Based on insights from mean-field theory, a lack of reflectional
symmetry should be conducive to the production of a systematic
mean EMF. We might therefore expect to see a strong dependence
of these results upon the choice of rotation rate and the inclination of
the rotation vector, 𝜙 (which corresponds to the latitudinal location
of the local Cartesian domain). Given the latitudinal distribution of
sunspots, which are never observed near the poles, it is particularly
important to consider the effects of varying the inclination of the
rotation vector, which we will describe later in this section. However,
we shall first briefly discuss the effects of varying the rotation rate
in the case of a vertical rotation vector (𝜙 = −𝜋/2).

4.1 Taylor number dependence

The rotation rate dependence in the lowest Prandtl number case
(𝜎 = 0.00025) was clearly demonstrated in Paper I. At moderate
Taylor numbers, this system produced a coherent E𝑦 but a negligible
E𝑥 . To produce a more substantial E𝑥 , it was necessary to increase
the Taylor number to Ta = 5 × 108 (which motivated this choice of
parameter in the present paper). We have already seen that the higher
Prandtl number cases produce a much larger mean EMF for Ta = 5×
108 than the case considered in Paper I. Furthermore, the increased
Prandtl number has a profound impact upon the maintenance and
generation of the mean flows, with a more closely-maintained target
shear and much weaker mean flows in 𝑦-direction. Given these

2 In the interests of clarity, the subscript “𝑛𝑥 = 1” here means that only the
Fourier modes of u′ and B′ with 𝑛𝑥 = 1 are included.

differences, it is not immediately obvious how these higher Prandtl
number cases will depend upon Ta.

Taking the case 𝜎 = 0.01, we have reduced the Taylor number
from Ta = 5 × 108 to 107, which we previously found was suf-
ficient to produce qualitative changes to the dynamics in the case
𝜎 = 0.00025. For 𝜎 = 0.01, by contrast, this reduction yields qual-
itatively similar dynamics, only on a longer timescale. In particular,
both components of the mean EMF are similar to those in the lower
panels of Fig. 6, except that a longer time is taken to reach compa-
rable magnitudes. We conclude that, for this larger value of 𝜎, the
dynamics are affected by rotation at a lower value of Ta. This may
be explained by the fact that, in our dimensionless units, increasing
𝜎 while fixing Ta corresponds to increasing the rotation rate (which
is why the Coriolis term in Eq. (1a) includes a factor of 𝜎).

4.2 Varying the inclination

Having noted that the higher Prandtl number cases are not strongly
dependent upon the choice of Ta, we now fix Ta = 5× 108 (for ease
of comparability with previous results) and vary 𝜙. In addition to
the results presented earlier for 𝜙 = −𝜋/2 (high latitude) we have
therefore also performed calculations for 𝜙 = −𝜋/4 (mid latitude)
and 𝜙 = −𝜋/6 (low latitude). The rest of the parameters are fixed
to the values presented in Table 1, focusing exclusively upon the
𝜎 = 0.01 case.

Fig. 8 shows volume renderings of 𝑢𝑧 at 𝑡 ≈ 250 and 𝑡 ≈ 500 for
each value of 𝜙. During the early, essentially linear development of
the instability (𝑡 ≈ 250), we see that the flow structures are elongated
in a direction roughly parallel to the rotation axis, in accordance with
the Taylor–Proudman effect. In all cases the perturbations grow at
a similar rate, and nonlinear saturation of the instability occurs at
𝑡 ≈ 400. The bottom part of Fig. 8 shows a later stage of each of the
simulations (at 𝑡 ≈ 500). By this point in the evolution, the effects
of the tilt have become significantly less apparent. In all cases, we
see a comparatively vigorous instability, with some indication of
undulation in the field-wise direction (particularly in the 𝜙 = −𝜋/6
case). Once the magnetic buoyancy instability has saturated, the
tilting of the rotation vector appears to have little effect on the key
features of the dynamics.

To assess the effects of a tilted rotation vector in a more quan-
titative manner, the mean fields and flows at 𝑡 ≈ 500 are plotted in
Fig. 9, which shows snapshots of these quantities at this time. In all
cases, the shear flow profile remains close to the target flow profile,
𝑈0, even well into the nonlinear regime. The secondary ⟨𝑢𝑦⟩ flow
remains weak (an order of magnitude smaller than the shear flow
in the 𝑥-direction), but reaches a slightly higher peak value in the
low latitude (𝜙 = −𝜋/6) case. The evolution of ⟨𝐵𝑥⟩ is similar in all
cases with only minor quantitative differences being observed (with
the most strongly inclined case deviating slightly from the other
two). As a consequence of the relatively low amplitude of ⟨𝑢𝑦⟩ in
all cases, the amplitude of ⟨𝐵𝑦⟩ is generally an order of magnitude
smaller than the amplitude of ⟨𝐵𝑥⟩ at a comparable depth. Again,
the mean field maintains a high degree of alignment with the 𝑥-axis.

Given that the dynamics seem to be only weakly dependent
on the tilt angle, we might expect to see comparable mean EMF
profiles. The components of the mean EMF for the 𝜙 = −𝜋/4 and
𝜙 = −𝜋/6 cases are plotted in Fig. 10. Comparing these profiles with
the lower panels of Fig. 6, we see that these are indeed remarkably
similar. One small difference is that the maximum amplitude of each
component decreases slightly as the latitude is reduced. Indeed, on
symmetry grounds we would expect E𝑥 to vanish at the equator,
i.e. for 𝜙 = 0 (e.g. Davies & Hughes 2011). Nonetheless, these
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Figure 7. The depth- and time-dependence of E𝑥 = ⟨𝑢′𝑦𝐵′
𝑧 − 𝑢′𝑧𝐵′

𝑦 ⟩ and E𝑦 = ⟨𝑢′𝑧𝐵′
𝑥 − 𝑢′𝑥𝐵′

𝑧 ⟩ and the constituent parts of these components, for 𝜎 = 0.01,
filtered to show only contributions from flow and field components with the largest lengthscale undular mode 𝑛𝑥 = 1.

results demonstrate that a significant EMF can be generated by
magnetic buoyancy instability across a wide range of latitudes.

5 DISCUSSION AND CONCLUSIONS

Magnetic buoyancy in the presence of rotation provides a natural
alternative mechanism to convection for the “rise and twist” effect
required for a Parker-like scenario for the solar dynamo (Parker
1955b, 1993). The simulations presented in this paper, which built
upon those of Paper I, considered the evolution of a shear-generated
magnetic layer in a rotating domain, focusing initially upon the
simplest case of a vertical rotation vector. A shear flow is maintained
in the 𝑥-direction, via the imposition of a body force that balances the
viscous and Coriolis terms in the governing equations. An initially
uniform vertical magnetic field is stretched out in the direction of
the flow, producing a magnetic layer that is susceptible to magnetic
buoyancy instability. One of the key limitations of the calculations
that were presented in Paper I was that the mean horizontal flow

⟨𝑢𝑥⟩ evolved substantially away from the initial forced shear (due
to the dynamical influence of the generated magnetic layer), with
significant mean flows also being driven in the 𝑦-direction. We were
able to resolve this issue by increasing the Prandtl number, which
made it more difficult for the Lorentz force to disrupt the initial
hydrodynamic force balance, and found only minimal departures
from the target flow for 𝜎 ∈ {0.005, 0.01}. This persistent shear
flow generated a stronger magnetic layer and hence a more vigorous
magnetic buoyancy instability.

We also analysed the resulting mean EMF in the new higher 𝜎
cases, comparing this analysis with the low 𝜎 case of Paper I. The
larger 𝜎 simulations result in a more complicated time- and depth-
dependence of E𝑥 than that of the low 𝜎 cases. In particular, E𝑥 has
dual banded structure with a positive band around the mid-plane that
expands in time, above which there is a shallow negative band that
moves towards the surface as the simulation progresses. Crucially,
E𝑥 is of much higher amplitude than in the lower 𝜎 case that was
considered in Paper I, and so is much more likely to play a significant
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Figure 8. The dependence of the 𝜎 = 0.01 case on the inclination of the rotation vector, showing snapshots (left to right) for 𝜙 ∈ {−𝜋/2, −𝜋/4, −𝜋/6}.
Top: pseudocoloured isovolumes of 𝑢𝑧 at 𝑡 ≈ 250, with the horizontally-averaged

√
𝐹𝐵𝑥 as the backdrop. Bottom: The same quantities at 𝑡 ≈ 500.

regenerative role in a corresponding dynamo model. We found that
this mean EMF component was largely generated by undular modes
of the underlying magnetic buoyancy instability, and this partially
accounts for the differences between the lowest Prandtl number case
(from Paper I), in which the instability remained largely interchange-
like, and the higher Prandtl number calculations that were presented
here. Undular modes also make the dominant contribution to E𝑦 ,
which has a simpler structure than E𝑥 but again reached higher
amplitudes in the higher Prandtl number cases.

Finally, we investigated the effects of varying the inclination
of the rotation vector, which corresponds to changing the latitudinal
position of the computational domain within the tachocline. The
inclination angle clearly played a dynamical role during the linear
development of the buoyancy instability, but in the nonlinear regime
we found only minor quantitative differences between the cases. For
all values of the inclination angle studied, we obtained a substantial
mean EMF, which is evidence that this regenerative mechanism can
operate effectively at the lower latitudes that are of most relevance
for the solar dynamo.

Having established computationally accessible conditions un-
der which this system is able to produce a significant mean EMF,
whilst also maintaining a tachocline-like shear flow, the next logical
step is to investigate the corresponding dynamo problem (adjusting
the initial imposed magnetic field so that there is zero net magnetic
flux across the domain). Based on standard mean-field arguments

(Parker 1955b; Moffatt 1978; Parker 1993; Moffatt & Dormy 2019)
we anticipate that the combination of shear and a significant mean
EMF in the direction of the mean field will be conducive to dynamo
action. In fact, these are precisely the ingredients required for a
“dynamo wave” model, i.e. a migratory dynamo similar to that ob-
served in the Sun. Further work to explore these ideas is underway,
and will be presented in a future publication.
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Figure 9. Horizontally averaged vertical profiles for each latitude 𝜙 ∈
{−𝜋/2, −𝜋/4, −𝜋/6} as denoted by the legend, for 𝜎 = 0.01. In all cases
the profiles are taken at 𝑡 ≈ 500 (with additional profiles at 𝑡 ≈ 440 for√
𝐹 ⟨𝐵𝑥 ⟩ as an insert which further illustrates the evolution of the field).
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Figure 10. The depth- and time-dependence of E𝑥 and E𝑦 for latitudes 𝜙 ∈ {−𝜋/4, −𝜋/6} in the 𝜎 = 0.01 case. These can be compared with the third row
of Fig. 6 which shows corresponding quantities for 𝜙 = −𝜋/2.
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